深圳电路板克隆高压变频器功率柜的散热与通风设计
目前高压变频器有高-低-高式、元件直接串联式、中点箝位多电平式、单元级联式等多种方式,一般来讲,上述各种方式的高压变频器,其效率一般可达95~97%;但由于设备功率大,一般为mw级,在正常工作时,仍要产生大量的热量。
为保证设备的正常工作,把大量的热量散发出去,优化散热与通风方案,进行合理的设计与计算,实现设备的高效散热,对于提高设备的可靠性是十分必要的。
高压变频器在正常工作时,热量来源主要是隔离变压器、电抗器、功率单元、控制系统等,其中作为主电路电子开关的功率器件的散热、功率单元的散热设计、及功率柜的散热与通风设计最为重要。
2 功率器件的散热设计
通常对igbt或igct模块来说,其pn结不得超过125℃,封装外壳为85℃。有研究表明,元器件温度波动超过±20℃,其失效率会增大8倍。功率器件散热设计关乎整个设备的运行安全。
2.1 在进行功率器件散热设计时应注意的事项
(1) 采用适当的散热方式与用适当的冷却方法,pcb抄板降低环境温度,加快散热速度。
(2) 选用耐热性和热稳定性好的元器件和材料,以提高其允许的工作温度;
(3)减小设备(器件)内部的发热量。为此,应多选用微功耗器件,如低耗损型igbt,并在电路设计中尽量减少发热元器件的数量,同时要优化器件的开关频率以减少发热量;
以目前最常见的单元级联式高压变频器为例,对其中一个功率单元为例进行热设计。功率器件采用igbt,其电路如图1所示。
2.2 损耗功率的估算
在设备稳态运行时,功率单元内整流二极管、igbt、续流二极管总的功率损耗即为散热器的耗散功率。因此热设计的第一步就是对上述器件的总功耗进行估算。
图1 功率单元电路图
(1) igbt的功率损耗一般包括通态损耗、断态损耗、开通损耗、关断损耗和驱动损耗,在估算时主要考虑通态损耗、开通损耗与关断损耗;
(2) 对续流二极管来讲,主要估算它的通态损耗与关断损耗;
(3) 整流二极管在低频情况下的损耗功率
主要为通态损耗,确定其通态功耗的简便方法是从制造厂给出的通态损耗功率与通态平均电流关系曲线直接查出。
上述功率单元总的功耗为:p=(pss+psw)×4+pd×6 (5)
2.3 稳态下的结温计算
结温的计算是建立在如图2所示的简化热阻等效电路的基础上的。电路板克隆上述功率单元的简化热阻等效电路如图2所示。
图2 igbt的热阻等效电路图
图2中:rθ(j-c)是器件结到管壳基准点稳态热阻,由制造厂家提供,一般在数据表中给出上限值或给出瞬态热阻曲线取t→∞的稳态值;
rθ(c-a)是管壳未通过散热器直接到空气的热阻,通常不考虑;
rθ(c-s)是管壳到散热器的触热阻,通常由制造厂家在数据表中给出;
rθ(c-a)是散热器基准点到环境基准点的热阻,其值由散热器形式、尺寸和冷却方式决定;