欢迎来到聚芯工作室 电话: 0755-83676200
当前位置:首页>新闻动态>正文

解密图像显示控制器的3D功能

 

    3D优于2D的原因显而易见。从清晰度来看,2D图像就像一张照片,只有宽度和高度,没有深度。一辆车的2D图像可以旋转、缩放,在屏幕上做二维(‘x’和‘y’)移动(转换)。而3D图像可以做三维(‘x’、‘y’和 'z‘)的旋转、缩放和转换。3D物体有深度,是全视角的。这是基于人对空间和物体的认知,3D可使人们获得更直观和互动的体验。有效的3D图像让消费者享受视觉盛宴,帮助定义产品的风格和价值,并传递大量的信息。
    生成3D图像需要复杂精尖的图像显示控制器(GDC),而它又需要一个几何单元和结构处理单元。将这些元素整合到一个图像引擎中可提供最佳性能,如图一所示。
    图1:图像SoC集成。
    作为该技术的领先者,富士通在嵌入式图像市场已活跃了十多年,而涉足图像领域已近二十年,它设计、开发并帮助客户集成领先的2D和3D 图像显示控制器。因此,让我们回顾一下这些强大而创新器件的基本原理。
    当前,许多最好的图像控制器对2D和3D图像都能驾驭。但在许多情况下,pcb抄板系统设计者并没有充分利用已有的3D功能,而这一功能可以给终端用户带来许多益处。例如,在汽车应用中,驾驶者想要了解泄气的车胎或不亮的车灯的情况。应用2D技术就要求具备许多预置图像,以此来突出所有可能的角度和情况。加之“车门或后备箱微开”的情况,就需要数百兆字节的预置2D图像(图2)。
    图2:显示旋转的2D图像(还需几百个图像来显示完整的旋转动作)。
    图3:3D图像——单一物体可以旋转至任何角度,缩放至任意大小,突出任意部位(轮胎、车灯、车门等等)。
    而有了3D技术,所有这些及更多要求只需不到一兆字节的图像和几何数据就可轻松搞定。
    3D物体的工作原理
    3D物体由三角形“网格”构成,这些三角形勾勒出物体具体的形状。电路板克隆物体越具体详细,所需的三角形也就越多(图4)。构成物体形状的三角形数量依所需物体显现的真实度而异。
    图4:一款福特汽车的多边形网格。
    每个多边形都有三个顶点,每个顶点都在“模型空间”中有“x”、“ y” 和“ z”坐标。这些顶点通常表示为一系列的浮点数。整个模型完全由这些浮点数构成,这些浮点数组成了模型的顶点数组。
    下一步是对模型进行“阴影处理”或“纹理绘制”,以使其看起来更像实物。阴影处理的过程其实就是简单地为每个三角形填色。可对三角形进行单色阴影处理——即只在三角形中填充一种灰度或颜色;也可以进行高氏阴影处理——即基于每一个顶点的颜色来填充渐变色